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ABSTRACT. In this paper, we introduce the first agent-based model of competition in quantities
featuring a Deep Deterministic Policy Gradient (DDPG) algorithm. This algorithm has been
selected as a replacement for the traditional Q-Learning algorithm to examine two current
unsolved questions in the economic literature: the tendency of algorithmic markets to converge
toward a collusive equilibrium, and the chaotic behavior of the dynamic Cournot oligopoly.
We show that the DDPG algorithm is a relevant tool to model oligopolies with independent
learning agents. We find that our model consistently converges toward the Nash-equilibrium
in every market structure we have tested, except for the Cournot oligopoly with well-tuned
parameters. We estimate the effect of these parameters on the decision process and explain
why collusion may occur in this situation. Overall, we show that algorithmic collusion remains
an exception when algorithmic complexity increases. We also place our model in chaotic settings
and find that the chaotic behavior of the dynamic Cournot model was only theoretical and never
observed in simulations.
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INTRODUCTION

Over the last few decades, the exponential rise of computational abilities and information
availability has paved the way for new practices in pricing methods for firms to emerge. The use
of algorithmic pricing, i.e. the set of technics that consists of using an algorithm to automati-
cally adjust prices, has become more and more widespread, transitioning from being a digital
marketplace specificity (Chen, Mislove, and Wilson 2016) to become a common tool used in
almost every industry. This dramatic shift in pricing technics have raised regulatory concerns
(OECD 2017, Competition and Markets Authority 2021) about possible effects of algorithms
on selected prices that could lead to spontaneous collusion, i. e. a situation where competitors
are spontaneously selecting prices that increase their profit beyond what should competition
bring them, without necessarily forming a cartel with communication.

In the meantime, algorithmic pricing and more generally breakthroughs in self-learning
decision algorithms are an opportunity for theoretical economists to reconsider classic ques-
tions and results. Hence, our motivation is plural. First, we are writing in the continuation of
the works of the Agent-based computational economics movement, especially we embrace the
principles of agent-based modeling defined by Tesfatsion 2017; Tesfatsion [2023| (MP axioms:
agent’s definition, scope, local constructivity, autonomy; system constructivity and historicity).
This new way of conducting economic studies appears well suited to our topic: by removing
the need of obtaining analytical solutions and results, we are free to implement as many re-
finements and heterogeneities as we want in our way of building agents, and, thus may access
results and market configurations that were previously unreachable due to their mathematical
complexity.

Then, we are writing in reaction to the ground-breaking results of several papers from Walt-
man and Kaymak 2008| to Calvano, Calzolari, and Denicolo 2019 on the effects of algorithmic
competition on market price and collusion. These pioneering works with Q-Learning agents
are nonetheless based on technics that seem outdated and partially inaccurate, justifying the
need of further improvements and works to challenge the first insights they have provided. In
the meantime, as the literature on Al and especially the reinforcement learning (RL) literature
flourishes, algorithmic possibilities are getting wider and wider, and the need of conducting
similar investigations with modern and more advanced methods becomes more and more pres-
sant, especially as some recent developments find contradictory results (Abada, Lambin, and
Tchakarov [2022]).

Last, but not least, we want to bring together the former fields of reinforcement learning and
algorithmic competition, with the emergent subfield of chaos control of equilibria in economics.
These interesting features of chaotic behavior and instability of equilibria in oligopolies are well
studied in recent works in standard models (for instance in the model from Cournot 1838, Puu
2008, Lampart, Lampartova, and Orlando 2022, Agiza and Elsadany 2003, Agiza and Elsadany
2004), but seem quite overlooked in the algorithmic competition literature. Our aim here
will be also to check whether these analytical properties can be transferred to our algorithmic
markets.

Our study will be conducted in 5 parts. In Section 1, we propose a literature review on
the two economics fields of algorithmic collusion and equilibrium stability. Then, in Section 2
we will define the theoretical foundations of the tools that we will extract from the various fields
that we have formerly introduced: game theory, microeconomics, reinforcement learning, agent-
based modeling and chaos control. In Section 3, we will introduce our simulation methodology
and our hyper-parameter calibration. In Section 4, we will highlight the main results of our
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simulations, in each type of oligopoly structure that we have decided to study. In Section 5,
we will discuss our results and see how they relate to the current literature.

1. LITERATURE REVIEW

We try in this section to give an overview of the state of the art for economics works that
study algorithmic collusion and the stability of oligopolies equilibria. As they are two fully
separate subfields, we will introduce them in two different subsections. Algorithmic choices and
mathematical implementations are introduced and questioned with the relevant literature in
the next section.

1.1. Algorithmic collusion

The literature about algorithmic collusion studies the possibility that independent agents,
modeled as independent learners, could learn not to play the Nash-equilibrium, i.e. what it is
rational to play in a non-communication static game, and to play an action that is closer to
what they should play if they were communicating and colluding. The literature is essentially
populated by papers that use a Bertrand oligopoly (competition by prices), but some approaches
(including ours) use the true Cournot model which is in quantities. This difference has no
interpretative consequences, one should only keep in mind that colluding in prices is to choose
a higher price, whereas colluding in quantities is to choose a lower quantity (cf. Section
2).

The seminal paper of the field is the work of Waltman and Kaymak 2008| that was, one
of the firsts, or the first one to prove that Q-Learning independent agents can converge collec-
tively toward an equilibrium that is deviating from the Nash equilibrium in the direction of the
collusive equilibrium. This work has been replicated many times, such that it is impossible to
make an exhaustive list of derived works. We pinpoint the famous work of Calvano, Calzolari,
and Denicolo 2019 as it was one of the first to demonstrate that, not only Q-Learning agents
were learning to collude, but they were also exhibiting punishment behaviors, which are charac-
teristics of a collusive state. This demonstration has been made possible by the use of memory,
and the departure from a group of studies that used state-less algorithms (we can mention the
work of Asker, Fershtman, and Pakes 2022)). Some very recent works have tried to give an
analytical explanation for collusive outcomes, using the relative simplicity of Q-Learning. We
can pinpoint the works of Banchio et al. 2022 and of Kerzreho [2024 that both use fluid approx-
imations and differential equations to determine causes for spontaneous coupling, enlightening
that Q-Learning algorithms overestimate the cumulative rewards associated with the states
attainable after cooperative actions.

At the same time, empirical studies have been conducted and support the link between
algorithmic-pricing and collusion. As detailed by Calvano, Calzolari, and Denicolo 2019, it
is quite difficult to estimate empirically collusion, as collusion is prohibited in most countries.
Nonetheless, several studies have been made and support the idea that firms can collude without
necessarily forming a cartel with communication (we pinpoint the work of Byrne and Roos
2019), an a very recent attempt has proved a link between algorithmic pricing and collusive
outcome by studying the case of Germany’s retail gasoline market (Assad et al. [2024)).

However, some very recent works have come to challenge these widely accepted results.
Indeed, the former almost all rely on the same technology: Q-Learning (or even simpler al-
gorithms), which is widely accepted as an outdated algorithm to solve continuous problems
with large action spaces (we further explain this argument in Section 2). Abada, Lambin,
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and Tchakarov [2022] state that over-simplified algorithms like Q-Learning, or not well-tuned
exploration processes, could be the source of these strange results.

1.2. Stability and chaos in oligopolies equilibria

The subfield of chaotic equilibria is very old but has been quite overlooked for decades.
The seminal paper is Theocharis [1960, which mathematically demonstrated that the Cournot
“adjustment mechanism” (i.e. the mechanism by which the firms settle to the Nash equilibrium
was first described without formalism by Cournot 1838, who postulated that this adjustment
will lead toward a stable quantity) was in fact no guarantee for the equilibrium to be stable.
Several papers have since demonstrated similar results, exploring different demand structures
and costs functions, as Puu 2008, Agiza and Elsadany [2003 Agiza and Elsadany 2004}

While some further developments have been made with exotic evolutionary approaches
(Hommes, Ochea, and Tuinstra 2011)), the issue of the instability of the Cournot oligopoly
remains an unsolved question. Several authors might have understood the mathematical im-
plications of this issue, but no economical explanation has been suggested, let alone proved, to
the best of our knowledge.

2. THEORETICAL FRAMEWORK

2.1. Microeconomic and Game theoretic framework

The main focus of this study is competition in quantities. We deliberately do not consider
all market structures that leave the choice of a price to the firms. We hence focus on four mar-
ket structures highly classic in economics: monopoly, Cournot duopoly, Stackelberg duopoly,
Cournot oligopoly, and perfect competition. The first and the latter will not be studied for
themselves but will be seen as limit cases of the two oligopolies. In this section, we will recall the
main features of the models, and compute the analytical solutions in our simplified case.

For now on, we will consider a linear demand function which is defined by D(p) = D —p
and respectively an inverse demand function D(Q) = D — @, with D € R, a parameter that
will be studied later (and p € R, the price, and @ € R, the total production quantity). We
use as notations ¢; the quantity produced by firm ¢ and ¢_; = () — ¢; the quantity produced by
every other firms. We assume that each firm will share in every models a common quadratic
cost function defined as Cj(gq;) = cq?, with ce R,.

2.1.1. Stackelberg duopoly

In this section, we consider N = 2 firms, a leader and a follower, perfectly independent firms
without any communication channel, and which have a market power, that is their decisions
can directly impact the market price. The game is assumed to be in perfect and complete
information, and to be static. The leader decides first the production quantity according to his
knowledge on the best response function of the follower, and the latter decides what to produce.
We denote the variables of the follower by the index f and the ones of the leader by the index
[. To solve this game, we use backward induction by starting with the second player:

argmax I (qr, 1) = (D — g5 — q)qr — cq; (2.1.1)
ars
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From which we can write the First Order Conditions (FOCY] and obtain the reaction func-

tion:
dqy

D —q

2070 (2.1.2)

=0< q¢i(q) =

The leader, knowing the optimal behavior of the follower, decides its production accord-
ingly:

* D —
argmax I1;(q, ¢r) = argmax{Il;(q;, ¢} (@) = (D — q — —qz)ql — cq}} (2.1.3)
a @ 2(1+¢)
Following the same steps as for [2.1.2] we have:
D(1 + 6c + 2¢?) . D(+20c)

%
U = 4(1+ ¢)(1 + 4ec + ?) W8t (2.1.4)
2.1.2. Cournot oligopoly
In this section we consider N > 2 perfectly independent firms without any communication
channel, and which have a market power, that is their decisions can directly impact the market
price. First, we will consider a simplified case, with perfect and complete information. Each
firm perfectly knows the cost structure of each other firm and can perfectly determine the best

response function of every other firm. Moreover, it is assumed that the game is static.
For each firm i, we can write the following profit function (objective function):

argmax 11i(gi, ) = (D — q; — q-i)ai — cq; (2.1.5)

qi

From which we can write the First Order Conditions (FOC) and obtain the reaction func-

tion:
oll; (qi, C]—z’)
0q;

D—q

SR (2.1.6)

=0 qlg) =
As we assumed perfect and complete information, the firm knows the reaction function of
its competitors and can therefore replace it in to find:

D

& (N +1)+2c (2.1.7)

One famous result is that, as firms are perfectly identical, their quantity is the same.

2.1.3. Dynamic Cournot model

In this study, we choose to introduce a more complex model as the previous ones. Indeed,
the two previous ones suffer from two limits: first, they heavily rely on hypothesis (complete
and perfect information) and they do not incorporate time. As we want to use self-learning
algorithms, the process by which the equilibrium settles, is as interesting to us as the equilibrium
itself. Hence, we introduce what we call a dynamic Cournot model - as several authors after
Cournot have tend to prefer it, but its diffusion seems to have been very curtained in the
previous decades without obvious reasons. We first partially release the perfect information
hypothesis by setting that firms no longer know the production technology of their competitors,
such that they are not able to compute their reaction functions. Moreover, they cannot observe
the quantities produced in the current period before selecting their actions and hence can only
base their decision on the last total played quantities in the previous period.

IFor the sake of clarity, we assume Second order conditions validated, which is obvious in most of our
maximisations as our demands are linear and our cost quadratic, implying a strictly concave profit.



STRATEGIES AND EQUILIBRIA ON SELECTED MARKETS 7
Hence, the profit of firm ¢ becomes:

argmax ITy(q;, ¢;"1) = (D — ¢; — g1 )a; — ¢(¢;)? (2.1.8)

a
As before we write the First Order Conditions (FOC) and get the reaction function:

oL (qf, g, ) D —q

‘d 2i+0) -

=0« qi(q{fl) =

Current produced quantities are determined by the following system of first-order difference

equations:
[0 1 1 1]
1 _ D_Zi qi_
&% = 39 a . 1 0 1 - D
: N N R 2.1.10
: o= it | ! ]| ] )
qi\] _ D*Zi;&N)qtfl qt]V : .. .. .. 1 qt]\il D
2(1+c \ ) : : ' : \ )
Q: [ 1 1 1 0f @
A

Two observations must be made: first, the steady-state of these first-order difference equa-
tions is the classical Cournot oligopoly that we presented before , cf. Appendix 1 for a
detailed proof). Secondly, as this system is a differential system, we need to check for stability.
We therefore analyse the eigenvalues of the squared matrix A:

Sp(4) = {-1,(N - 1)}
= r(A) = max(|Sp(A)[) = [N — 1

-1 N -3
—— A <lec>
2(1+¢) 2

(2.1.11)

= 7(

This stability condition (which is developed and proved in Appendiz A) will later be very
important when ¢ will be fixed. For now, we can say that the oligopoly is trivially stable for
N < 3 which is a standard result obtained by Theocharis [1960. When the stability condition
is met, the system converges toward the steady-state, i. e. the normal case. In the contrary,
when the condition is not met, the system diverges, although when fixing bounds for quantities,
the system tends to alternate between the bounds of the set for ¢i.
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Cournot Values
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0 20 40 60 80 100 0 20 40 60 80 100
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(A) c=0.2 (B) ¢ =0.55

FIGURE 2.1.1. Numerical simulations illustrating the behavior of the
Cournot system of quantities (simulations conducted with D = 2.2 and
N = 4, quantities are bounded between 0 and 1).
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2.2. Reinforcement learning and agent-based modeling

2.2.1. Agent-based modeling

Contrary to the standard way of studying oligopolies in the economic literature, we choose
to implement an agent-based model. Indeed, our objective is double: first, we want to develop a
model free approach without almost any assumptions given to agents. We model agents as fully
autonomous without any information on other agents nor on the market structure. Their only
property and certainty is that their objective is to maximize their profit. This framework allows
us to study cases with imperfect or incomplete information, and to avoid making unrealistic
assumptions. Secondly, as we discovered with the dynamical Cournot model, the aim of this
study is also to explore not well-defined equilibria, where analytical solutions are not available.
Agent-based simulations are one of the few available and reliable tools that can allow us to
study this type of phenomena.

One other interesting advantage of this modeling approach is that it allows us to study
decentralized equilibria that are more realistic. Indeed, as mentioned in the introduction, one
of the main driving factor of the growing interest for artificial markets is the surge in the use of
algorithmic pricing. Using an agent-based model is not only the sole option to implement such
algorithms, but also the most realistic as it reproduces quite well the true mechanism of the
markets of algorithms. Nonetheless, the only limitation on this matter is that we will focus on
synchronous learning, which is not a realistic assumption in most cases. A natural extension
of this work will be to consider the asynchronous case.

To be precise, we consider each firm to be a separate fully autonomous agent. Consumers
are not modeled here: we consider only a representative consumer from which comes all the
demand. The consumer is not modeled as an agent: it is more like a market clearer with no
autonomy. Here, we suppose that no information is shared among firms, and no information
on the demand is provided. Hence, for instance, our agents are not implemented with some
knowledge on the reaction function of the other firm. Agents are totally isolated: each firm
chooses its level of production, and receives from the market clearer the price at which it has
been bought.

2.2.2. Reinforcement learning

As agents are fully separated and autonomous, they need to be able to elaborate strategies
and to react to the responses of the environment. We decide to have a model-free approach:
no strategies are preregistered (hardcoded) in the simulations, and agents are free to behave as
they want. Due to the structure environment-agent that we previously described, reinforcement
learning is the standard tool used to implement the decision process of agents.

The classical tool which was widely used is Q-Learning (proposed by Watkins 1989 and
famously used by Calvano, Calzolari, and Denicolo[2019). We consider a Markov-game (Littman
1994) composed of N < N the set of agents (for simplicity we consider card(N) = N € N),
Ajeny © R (finite and countable) the set of actions available for each agent, S the set of

all possible states, and the markovian transition function p : S x X A; — S such that
jeEN

Si11 = (84, a1, ...,ay). We want to highlight here the fact that we are in the framework of a

Markov game, allowing us to only consider the previous state and the current actions of players

to deduce the next state.

Each firm (hereinafter agent) receives after each action (and hence state transition) the
reward r computed by the mapping r : S x A; — R. Contrary to the analytical way of
modeling economics, the agent here does not maximize its profit but its expected total reward:
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R =7 ~"(s;,a;) (with v € [0,1] a discount factor). We can write the program of the agent
(known as the Bellman’s equation) as V(s) = max,ca{E[r(s,a)| s,a] + vE[V ()] s,a]}. We
can rewrite it and obtain the classical equation of Q-learning;:

V(s) = max{Q(s,a)} = max{E[r(s,a)| s,a] + yE[maxQ(s’,a’)| s,al}
aeA acA a’'e A

Many issues arise from this technic. First, A; < R is a finite and countable set which is
not well suited to the task we are trying to model: prices are by definition continuous, and
the discretization of this action space has not been yet proved effect-less on the final results.
Worst, as Q-learning relies on the computation of a Q-Matrix (a table for Q(s,a) values, of
dimension card(S) x card(A)), it fails to scale when the dimension of the action space increases.
Some developments (the most famous is Mnih et al. 2013)) have tried to improve Q-Learning
with for instance the use of neural networks as approximations for the @ function (Deep Q-
learning). Nonetheless, these methods still struggle with continuous and high-dimensional
action spaces.

The use of these technics (Q-learning and its variants) has become more and more wide-
spread in the economic literature despite these limitations due to their relative simplicity (es-
pecially for the implementation part). However, if one could bear to make assumptions to
accept the use of these technics, it seems quite difficult to accept without question the results
that they allow to discover when they go against all that the standard theory produce: indeed,
we can highlight the famous work of Calvano, Calzolari, and Denicolo [2019| which prove that
Q-learning agents in a Cournot oligopoly learn tacit collusion instead of converging toward
the Nash equilibrium, as microeconomics would predict. These results appear difficult to fully
embrace as they heavily rely on an algorithm that is not well-suited for the task we are using it
to. In order to challenge these conclusions and not to fall in the same perils than the previous
works, we choose to use a more modern approach directly extracted from the reinforcement
learning field, which is still very little used in the economic literature.

2.2.3. A Deep Deterministic policy gradient algorithm

The algorithm we have chosen to implement is directly derived from the work of Lillicrap
et al. 2015, which itself heavily relies on Silver et al. 2014 and Konda and Tsitsiklis |1999 (the
seminal paper who introduced Actor Critic algorithms). The use of this type of algorithm is still
rare in the economic literature: we can identify the works of Abada, Lambin, and Tchakarov
2022/ who used an Actor-critic algorithm and Graf et al. [2023. We stay in the same framework
as introduced for the Q-learning section, with the same transition and reward functions. Our
algorithm follows an actor-critic approach: first, the agent learns a policy m which is a mapping
7S — P(A) where P(A) is the set of probability measures on the action space. Hereinafter,
we will be dealing with deterministic policies and not stochastic policies. Hence, 7 can be fully
described by the deterministic mapping:

p:S— A

s — argmax, Q" (s, a)

Then, the agent has to estimate the reward function (Q7 (s, a), the critic part of our actor-
critic algorithm). As, it uses his policy to interact with the environment (its actions follow a
probability distribution), and perceives a gain accordingly, its objectif function can be rewritten
as:

Jﬂ- = ESiNE,aifvﬂ' [R|SO7 ao]



STRATEGIES AND EQUILIBRIA ON SELECTED MARKETS 10

We can also write the expression of the action-value function, to follow a similar framework
as Q-learning:

Qw<st7 ai) = Esi~E,a§~7r [Rt|st7 ai]
= E8t+1~E[r(St’ a’;) + ,}/Eai+1~7r [QW(St_’_l, aé-‘rl)] |st7 a?‘,]

As the policy is fully deterministic, we can simplify:
Q" (s1,a) = Es,i~p[r(st, a;) + Q" (ses1, 1(s141))|51, af] (2.2.1)

Now that actor and critic functions have been fully described, we need to highlight how they
are approximated. Indeed, the goal of the algorithm is to make two convergent estimators of
p and Q7. We use neural networks as estimators, and consider py, = 1(s|6,) as our estimator
of u with a vector of parameter 6, (weights and biases of the neural network), and Q} 0 =
Q" (s,alfg) for Q™ with parameters 6g. Our estimators are constructed using a replay buffer
(B) as suggested by Lillicrap et al. 2015, where we store all previous experiences as tuples

i 1 N
(Sty T, Ay vey Gy St41)-

To calibrate our critic estimator we define a loss function with respect to g, parameters
that will be fitted using a gradient descent that we will later introduce:

T A 7 s 2
L(0g) = E[(Q" (51, a1l0q) — (r(se, ar) +¥Q (501, 1(5641)))” |1y s, 54, Se41] (2:2.2)
Which can be rewritten in a computable form, when evaluated on B < B:

L(%Bb@ S (@ (sdilbg) — (r(se,a}) + 1@ (see1, (i) (22.3)

i o1 N
(s¢,77,a4 5.0y ,St+1)EB

This calibration is actually very classic in the Al field, and does not raise any issue, as
we somewhat know the value toward which our estimator should converge (we can compute
the @ function in simplified cases, and we give to the agent a reward that is design to make
them learn this function). Although, the actor case appears far more challenging: in this
case we want an estimator of the argmax function of an estimator. Here, it is not possible to
minimize a loss between correct values and estimated values as it is quite impossible to perform
a dynamic maximization of () at each iteration. To solve this issue, we use the Deterministic
policy gradient theorem from Silver et al. 2014l

Deterministic policy gradient theorem: Under conditions elucidated in the
next subsection, we have:

Vg, J" = f p(8)Va, 1(5]02)VaQ" (8, al0g)|ap(slo,)dSs (2.2.4)
S

with p(s) a discounted state distribution factor made accordingly to our mar-
kovian transition function p.

Equation enables us to perform a gradient ascent (as we are maximizing and not
minimizing) on J™ and to get a convergent estimator p(s|f,), without performing any time-
consuming dynamic maximization of ). As observed Lillicrap et al. 2015 the factor p(s) is
ignored in the literature without significant alterations to the results.

Nonetheless, Lillicrap et al. 2015 the first paper to have implemented such algorithm,
observes that there is a great instability when directly using eq. on neural networks.
Indeed, at each learning step, Vy_J7™, -that is used to fit pg_-, is computed using values from Q7,
which itself is currently being fitted by a gradient descent on Ve, L(6¢, B), which is computed
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using g, (Si11). In order to stabilize the learning process and avoid these circular references,
we follow an approach initiated by Mnih et al.|[2013| and introduce two other estimators (neural
networks): ju 5" = pteEet(s]6,) and Qg(’;arget = Q™8 (5 a|fg). These target estimators are
delayed versions of our primary estimators that are cloned with them every s training steps.
This cloning operation is a Poliak averaging:

etarget — Hﬂ_ + 1 — etarget
{ g T+ (1= 7)6x with 7 € [0, 1] (2.2.5)

t t t t
0o %" =10 + (1 —1)05"

Finally, we can rewrite our two main fitting equations (2.2.3 [2.2.4) with target net-
works:

1

L0 B) = —— 3 [Q%(s0ailfg) — (r(s0 @) + 1Q™ (ses1, 1™ (505 0)))F (226)
card(B)

(st,ri,at,sHl)EB

Vg, J" = J Vo, 11(510:)VaQ™ (5, al00)|a=pu(s|o.)ds (2.2.7)
S

As in every machine-learning algorithm, we implement an exploration policy G. Here we
decide to use a white noise, such that a! = u(s|6,)+G with G < N(0,0(t)) with o(¢) a function
of the time that will need to be elucidated.

4
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FIGURE 2.2.1. Critic and Actor neural networks estimators.
Both networks feature two dense fully connected hidden layers with ReLU acti-
vation and one output with sigmoid activation.
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Algorithm 1 Deep Deterministic policy gradient (based on Lillicrap et al. 2015), for agent i

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

for t e [1,7] do
Observe state s;
Select action using a; = u(s|6,) + G
Observe reward 7!, next state s;,; and store in B (s, i, al,...;al,....,al, s441)
for be [1,4] do
Sample a set B of transitions from B
for e € [1,card(B)] do
Compute gradient of the Critic’s error loss [2.2.0]
Compute gradient of the Actor part with the DPG Theorem [2.2.7]
end for
Perform a gradient ascent on the mean of Actor gradients
Perform a gradient descent on the mean of Critic gradients
Update target networks with a Polyak average [2.2.5
end for
end for

Memorandum on the key concepts underlying our DDPG implementation

e Learning: an algorithm for learning is typically a sequence of instructions for
adapting the values of certain parameters in a model designed to describe a
certain type of data. Think of simple linear regression in the univariate case
(Y = aX + b), then computing the intercept (b) and the slope (a) of the
regression according to, say, ordinary least squares on a given data set, is a
procedure to "learn" a linear model of the data present in the data set. This set
may then be considered as a training set, and the linear function that has been
learnt (“trained”) on it can be used to make predictions on other data.

e Exploration procedure, gradient descent/ascent: a learning procedure, as de-
scribed above, would usually involve an optimization, eg minimizing some
function that is considered to represent an error in the prediction or a loss in the
description of the data (hence often called "loss function", or "cost function").
When it is not possible to compute exactly the optimal point (in linear regression
with ordinary least squares, it is), one has to resort to explore the set of all possi-
ble models, looking for the one that minimizes the loss function (or equivalently
maximizes some function measuring the good quality of an approximation).
Hence the need for an exploration strategy. Classic strategies include starting
with a randomly chosen model and moving in a direction (i.e. changing the values
of the parameters) where the value of the quality or the loss function increases or
decreases -that is, following the direction or the opposite direction of the gradient.

e Learning rate: in a learning algorithm and/or an optimization procedure, there
would usually be a parameter accounting for either the size of the step we take eg
in the gradient descent or the importance we give to new data points compared
to the ones already used to "learn" coefficients. Such a parameter is called the
learning rate: if put to 0, nothing happens, the current values of the model
parameters never change, the algorithm does not "learn" anything anymore.
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e Neural Networks: just like in the case of regressions, these are functions (albeit,
complicated sequences of functions composed with one another, especially in the
case of so-called deep learning), that are designed to model data. They may
be thought of as networks of virtual neurons that receive, process and output
information. Neural networks usually have many more parameters than simple
regressions, in particular the "weights" that encode the influence of neurons on
one another.

Deep deterministic policy gradient algorithm: the purpose of the algorithm is
to learn without any previous knowledge a function that maps states and actions
(and which is called a policy). In our economic context, states are previous actions
from other players, and actions are selected quantities. This policy is formally
learned by a neural network called Actor. This network is trained using another
network, the Critic, which aims to estimates the outcome of each possible pair
(state, action). Both networks are trained using a Replay buffer, a collection of
previously observed (state, action) pairs. To avoid instability, both networks are
cloned in target networks, which are simply lagged copy of themselves used to
stabilize training.

1
LEARNING ! DECISION
P e o e mm e 1 i
Target actor | :
u}_)dates 1 i Agent |\ .. Agent
argmax Q .. with lagI i 2 N
at+1€EA 1
Critic , |
(Target) 1 ! Select
I : action
i
t ! |
Estimate I | !
forre profit | max Q(si1,d141) ! ;
expectation W+ € | 1 .
1 Target critic 1
I updates 1 Actor Select
1 with lag . action
_ Compute I Estimates
i = a
SerTe, g true Q-Values | best t
I action
|
Train by 1 St
gradient I Find
descent maximum
by
oy gradient Return profit
C l‘ltlc ascent and other

players’

Estimates Q-Values )
actions

(St: Tty Gty 5t+1)

Replay buffer

Store past episodes in the form of (s¢,r¢, at, St1)

S

FIGURE 2.2.2. A summary of our algorithm design (we use a DDPG
algorithm)
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2.3. Markov decision games and convergence issue

The previous framework in which we have laid the foundations of our reinforcement learning
algorithm is a Markov game directly derived from the work of Littman 1994, Before using our
algorithm in oligopolies described in our microeconomic theoretical framework, we need to
discuss theoretical properties of such games. To summarize in a game theoretic language,
our aim is that every independent player (agent) finds and learns an optimal policy (that is
undominated), and, hence, collectively converge to a Nash equilibrium. Unfortunately, there is
currently no proof nor clue that the precedent framework is well suited to perform such a task.
We will in this subsection review several issues that we need to tackle, and what unresolved
uncertainties are left for future research.

First, the obvious question is: is-there truly an optimal policy for each agent to learn?
and is there a Nash equilibrium? These questions are studied by Littman [1994]in a theoretical
way. Nonetheless, the answers in this paper are not fully convincing in our setting. Indeed, it
is proven that there exists an optimal policy, and this policy can be found using the Minmax
classic way of solving games in game theory. First, the proof of existence of an optimal policy
is achieved using stochastic policies. Yet, algorithms that we have studied in the previous part
are all deterministic, that is they can only learn and find fully deterministic policies. Secondly,
as we are dealing with oligopolies, the minmax solving way is not satisfactory (this can be seen
by reducing the problem to a classic problem of static game theory and comparing obtained
equilibria).

Secondly, if proofs of convergence are available for algorithms that we have studied before in
the simple agent case, no proof exists - to the best of our knowledge - that such algorithms will
truly learn an optimal policy in a multi-agent framework. Indeed, the main issue highlighted
by Lowe et al. [2017]is that the transition function p that we have previously introduced does
not only depend on the action of one agent, but on the actions of every other agent. This can
lead to high variance in the learning process due to the fact that each agent cannot isolate the
effect of its action on the state transition and reward. Worst, the gradient descent/ascent could
be lured: learning a suboptimal policy could give higher rewards if at the same time the action
of other agents are modifying favorably the reward of the first.

Several algorithms derived from the DDPG algorithm (Lillicrap et al.2015) have been since
introduced to tackle the issue of multi-agent settings. We choose to highlight some, and briefly
explain why they do not fit our requirements.

e Multi-Agent Deep Deterministic Policy Gradient (MADDPG) from Lowe et al. 2017}
this algorithm may be the most instrumental contribution to the field of multi agent
reinforcement learning. Their approach relies on the principle of centralized critic -
decentralized actor, which is not well suited to our study. Indeed, it is highly non-
realistic that competitors would make their algorithms train together and share the
same centralized critic. Hence, despite being very promising in terms of performance,
this technical solution is not fitted to our economic study.

o Multi-Agent Actor-Critic with Networked Agents from Zhang et al. 2018} this algorithm
features fully decentralized agents but is only designed to work for cooperative games
where agents have to work to optimize the global reward. Again, such technics would
be in reality fully prohibited by law in the context of competition.

e Distributed Deep Deterministic Policy Gradient (3DPG) from Redder, Ramaswamy,
and Karl |2022: this algorithm is very interesting as it comes with a convergence proof.
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Yet, this proof relies on the use, not of the actions of other agents, but directly of their
policies, which again is fully unrealistic in a context of competition.

o Potential-field-Guided Deep Deterministic Policy Gradient (PGDDPG) from Zhou et
al. 2021: this algorithm might be the most credible alternative to normal DDPG, as
it is designed in two versions, the second featuring no communication between agents.
It uses the second critic estimator with Artificial Potential field, a function that gives
higher reward to agents that are close to the objectives, making them attracting. If
this idea seems quite promising, this algorithm imposes the creation of a totally new
theoretical description of the environment in the case of economic competition. Yet, this
task seems challenging: how to define attractive points in the environment in situations
where firms that are using the algorithms do not know in advance the best price or
quantity, as they do not have enough information on the demand or on other firms’
production technology? We leave these developments for future work.

Despite the theoretical limitations of normal DDPG, several remarks must be made. First,
several studies have, as we will, tried to use the DDPG algorithm in a multi-agent setting.
Despite showing that DDPG suffers from high variance and sometimes suboptimal results,
Lowe et al. |2017 show that DDPG can still fulfill the task in most cases, using more time, or
accepting a second-best equilibrium. If the effects of the improper use of the Deterministic
gradient theorem are not easily measurable, Lowe et al. |2017 analytically proved that
in very simplified games, the difference between the true gradient and the true gradients is
P(< @J, VJ >= 0)oc0.5", which appears tolerable to us. Secondly, in the economic field Graf
et al. 2023| has successfully tried to implement a DDPG algorithm in the context of a Bertrand
oligopoly, and shown that convergence was archived in most cases, after correctly tuning hyper-
parameters. We will try to reproduce and continue this first -to the best of our knowledge-
attempt in more complex oligopolies.

3. OBJECTIVES AND METHODOLOGY

3.1. Main and secondary objectives

The main objective of this study is to demonstrate that the (independent) DDPG algorithm
can be used to model multi-agent economic markets. Nonetheless, this work is not solely a
pure theoretical work. We aim to challenge the algorithm by using it as if it were used by
independent firms to automatically determine their prices. Hence, for each market composition
(Cournot / Stackelberg), we will study the quality of the convergence of the DDPG algorithm
toward an equilibrium from a mathematical point of view, and we will economically question
the consequences of such an equilibrium both for the market (with regard to collusion and
market concentration) and for the firm itself.

The novelty of this approach is that it is truly model-free. We never implement in our
simulations any hypothesis on the behavior of agents (rationality and best response for in-
stance), or never give any information on agents (no more than the environment feedback). For
instance, in our Cournot model, agents do not even know how many of them are present on
the market (and only observe the total quantity produced), or in our Stackelberg model, no
information is given on the firms about their status (leader/follower). Hence, by imposing such
challenging constraints, this study wants to test both the implementation of learning agents in
traditional models, but also the impact of such incomplete and imperfect information on the
equilibrium.
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To sum up, we introduce three research questions that, to the best of our knowledge,
lack full answers in the literature:

Q1 Is the DDPG Algorithm a relevant tool in a multi-agent setup, in particular in the case
of oligopolies with competition in quantities?

Q2 How does the equilibrium evolve when non-myopic agents are introduced?

Q3 How do learning agents behave in a setting without any stable analytical solution?

3.2. Stmulation methodology

To tackle these three research questions, we conduct several batches of simulations (using
D, D() and ¢ as demand and cost parameters defined in Section 2.1, and ~ the actualization
rate from Section 2.2.3):

e First, to challenge the relevance of the DDPG algorithm and answer Q1 we conduct
two types of simulations: a Cournot duopoly, and a Stackelberg duopoly. Both of them
should be conducted with v = 0 even if it can jeopardize the efficiency of the DDPG
algorithm to stick to the game theoretic definition of these games (fully myopic agents).

e Second, we introduce non-myopic agents (7 > 0) in the Cournot duopoly to evaluate
the effect on the equilibrium that we have been previously studied (Q2).

e Last, we will focus on the Cournot 4-oligopoly: we will try to simulate chaotic cases
(¢ <0.5) (Q3), and non-myopic agents (Q2) to evaluate the effects of these alterations
on the equilibrium.

To be very precise, each of our simulations follows the same pattern. The market is only
made of firms that are learning agents. If they observe a past value (it is the case in the
Cournot oligopoly for instance), it is initialized to 0 at the beginning. All firms are asked to
decide their quantities (we call this a “round”) and, at the end of the round (i.e. when all
firms have decided), they receive from the environment the profit they made and can observe
other’s quantities. The rounds, when agents are not myopic, are supposed to be all dependent
(previous choices can affect next choices) and no run is considered as terminal (in game theoretic
terms, we assume that the game is in infinite horizon). Every 128 rounds, a learning session is
launched. The simulation reaches its end due to a round limit. There is no convergence test to
stop the environment.

Nonetheless, we will in the results section provide some convergence measures. From now
on, we will consider as the “convergence value” the mean of the last values taken by the variable
when its standard deviation is less than .001. In most cases, this “convergence value” is deter-
mined by taking the average of the last 2% values (without taking into account decisions that
have been affected by our exploration white-noise process). Contrary to some other approaches,
we do not check convergence in simulation time, and hence do not stop the simulation when
convergence is reached. All of our simulations are conducted with floating point numbers, with
a precision of 1077,

3.3. Hyper-parameters tuning

Due to our design choices for Neural Networks (we use two fully-connected ReLU layers,
following the work of Graf et al. [2023, and one sigmoid output layer), we are constrained to
keep our expected outputs in the interval [0,1]. As neural networks will have to learn the
Q-Values and the best response function, both Q-Values and possible actions need to stay in
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this interval in order for the neural networks to be able to approximate them. We could use
advanced technics of normalization, but we stick with a simple solution to this problem. First,
we use the fact that argmax is translation invariant and use an affine transformation to keep
rewards in [0,1] while not impacting the optimal behavior to learn (we calibrate 1, and H, in
eq. . Second, we calibrate D and c to find values for I1(¢?, ¢;*) € [0, 1]. This has proven to
be a more challenging task that one could have expected, as the feasible set for this constraint
is small, especially when the number of agents grows. For future works, we would recommend
using a pre-normalization technic to loosen this constraint on possible parameters. As all these
values depend on the number of agents and the profit function, they will need to be computed
for each different simulation setting, and will hence be provided whenever a batch of simulation
is studied.

(s, a1, ..., an) = 0l (ai,Za{) + H, (3.3.1)

i#]

Still on neural networks, we initialize all weights and biases randomly with a normal law.
Moreover, our gradient descents and ascents are implemented with a decreasing learning rate
(which itself is different for the actor (A\,) and for the critic (Ag) network), with a decay
factor w!. These values have been find by a trial-error method, but do not change any valuable
results that we manage to get when they are taken in the commonly-accepted interval [.001, .3].
Gradient ascent and descent are implemented with the mini-batch method.

The exploration process appears very determinant in our simulations and might be the
most controversial. We enforced a time-dependent process with high variance ([o(¢)]?) at the
beginning of the simulation, and low variance at the end. Such a mechanism helps the algorithm
to converge but can be criticized on two bases: first, it can increase the risk of falling into a
local optimum, and then it is not very realistic as it is difficult to imagine a firm accepting
errors so big (yet, we accept this hypothesis as firms can train the model in a sandbox with
previous data).

We provide a summary of hyper-parameters that have been introduced so far in the Theo-
retical framework (Table[l)). All parameters that have not been elucidated have been found by a
trial error method, without any observed influence on any result previously or later mentioned.
The influence of the memory buffer maximum size, extensively discussed by Graf et al. 2023,
will be studied in the result section.

4. RESULTS

4.1. Performance of our DDPG algorithm in standard games with myopic agents

4.1.1. The Cournot duopoly

The Cournot duopoly appears to be the simplest and the most obvious oligopoly to model
and on which to test our learning agents. Indeed, in the duopoly case, we have a stable
analytical solution and a unique equilibrium. As agents are equal in the Cournot oligopoly, our
two oligopolists are implemented in mirror, and both directly observe the choice of the other at
time ¢ — 1. As previously explained, to stick to the game theoretic definition of the model, we
keep v = 0 (fully myopic agents). We use as parameters D = 2.2, ¢ = 0.2 and compute with

eq. @t = 647, Q% = 1.204.
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Parameter Type Value Note
D R, - Demand constant
c R, - Quad. cost coeflicient
A R, [0, 1] Action set
v [0,1] - Future discount factor

m = card(B) N

N [6x10%12 x 10]

Memory buffer max. size

T Time limit

S [0,1] {.06, .15, .3} Exploration noise max. variance
o(t) (RN - Exploration noise variance

N R [0,1] Profit reward scaling factor

H, R [0,1] Profit reward scaling factor

0, R® N(0,0.3) Actor’s N. N. initialization weights
0, R% N(0,0.3) Critic’s N. N. initialization weights

T [0,1] .95 Polyak averaging coefficient

A [.001,.3] .001 Actor network learning rate

AQ [.001, .3] 1 Critic network learning rate

w [0,1] .9998 Learning rate decay factor

card(B) N 32 Batch size
I} N 32 Batches per training episode

TABLE 1. Hyper-parameters summary.

“w

All parameters with values
depending on the model studied.

Total Quantity

Round

(A) Evolution of the total quantity (gi + ¢?).
The Cournot predicted quantity is in blue, the car-
tel equilibrium in red and the perfect competition
equilibrium in green.

are implementation specific, i.e. will be adapted

Density

Selected quantity

(B) Distribution of the total quantity (¢} +¢?)
at convergence.

In black a normal law with the distribution’s pa-
rameters (u,0) and the Cournot expected quan-
tity; in red the median of simulations; in blue the
5% confidence interval; in green the 15%; in or-
ange the density function of (¢} + ¢?).

FIGURE 4.1.1. Quantity chosen by the learning agents in a Cournot duopoly
(107 simulations conducted with m = 2000, ¢ = .15, v = 0)

Overall, our simulations reach an equilibrium that is in a neighborhood of the analytical
equilibrium value (fig. [4.1.1). The results are more accurate when studied at the level of
the market and not at the firm’s level. Indeed, the equilibrium reached is never perfectly
symmetrical, and during training, one firm always ends up with a small advantage. We provide
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some distribution measures in Table , with a Shapiro-Wilk normality test (Shapiro and Wilk
1965) to check whether it is reasonable to consider that our simulations converge toward an
equilibrium following a normal law.

Global dispersion Shapiro test Distribution

Sample QL £5% QF+10% QE+15% W p-value T 5
Uncorrected 0.794 0.991 0.991 0.932 3.871e-05 1.287 0.0557
Without outlier — 0.802 1 1 0.990 0.613  1.289 0.0487

TABLE 2. Descriptive statistics of the simulation sample of the Cournot
duopoly (107 simulations conducted with m = 2000, ¢ = .15, v = 0).

79.4% of simulations have converged toward an equilibrium that is in the interval
Q¢ + 5% with QF the Cournot analytical total solution.

As it can be seen in our density plot there is one outlier, one simulation that has
converged toward an equilibrium that is clearly lower than what we should expect. In fact,
the simulation has converged toward the Cartel equilibrium. This result is quite surprising as
agents are myopic and do not cooperate, but can be explained by a low exploration that can
have biased the training (has agents are trained synchonously). When excluding this simulation,
we can no longer reject the hypothesis that our simulations converge following a normal law
around the total value of the Cournot model (according to the Shapiro test in table [2)). If we
consider these simulations as an estimator for the Nash equilibrium, it appears that it is an
asymptotic unbiased estimator (QF — & = .005) and a consistent estimator.

In game theoretic terms, the expected consequence of these results should be that agents
are learning their analytical best response functions and behave accordingly. Nonetheless, a
closer look into the policies that has been learned by agents show that the DDPG algorithm is
quite efficient to estimate locally the best action, but poorly behaves for extreme values (fig.
. The further we get from the simulation equilibrium, the worst becomes the estimation
of the optimal policy.

The same issue arises in the Critic estimator (fig. . It seems that the DDPG algorithm
manages quite well to predict low profit values and near-equilibrium values, but still struggle
with extreme profits. This is quite expected as rounds featuring a very high level of profit (that
is higher than the profit in the Cournot equilibrium) must have been quite rare in the learning
stage, as they need the other agent to suffer losses for a long time, which would be irrational.
These estimation errors are the symptom of the biggest issue with our technic: as learning is
synchronous, agents can only learn rewards when other agents are leading them to it. Hence,
some equilibria can remain undiscovered if other agents never play what it is needed to find
them.

Hyper-parameters influence As we have shown that the DDPG algorithm was in fact a
great tool to model the Cournot duopoly because learning agents are behaving quite as predicted
by the analytical results (they reach the Nash equilibrium demonstrating rationality and good
understanding of the problem), we now want to emphasize the effect of some parameters on the
behavior of the algorithm, and try to improve learning performance outside of the neighboring
of the equilibrium.

First, one important parameter is the exploration policy. To learn the optimal policy, agents
need to explore the action space. Several policies have been implemented in the literature. Here,
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Actor decision

Deviation from (static) best response function
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(A) Deviation from static best response over (B) Optimal policy at convergence.

time. In red is the analytical best response (2.1.6), in

Computed using eq. blue are the simulations’ output. We can see that
the further we get from the equilibrium, the worst
is the estimation.

FIGURE 4.1.2. Optimal policy learned by agents in a Cournot duopoly
(107 simulations conducted with m = 2000, ¢ = .15, v = 0).

The left plot shows that, as much as time passes, agents are selecting actions
that are closer and closer to the best response values (+.1). Nonetheless, the
right plot reminds that DDPG is not very efficient to estimate the best response
function when we look to values that are far from the equilibrium point (the
distance between blue lines and the red line is increasing).

as described in section 1.2 as the parameter G, we use a normally distributed white noise to
force the agents to explore the action space and not to stick to their greedy value. The variance
of the white noise is determined by o"™(¢) = ¢(1— %) and is decreasing as time passes. We test
several values for ¢, which is the maximum standard deviation of the white noise of our model.
To assess the performance of the algorithm in each case, we focus on the same criteria as before,
but implement a new measure that tries to take into account the difference between the actions
of the two players. Indeed, in our simulations, if the total quantity has well “converged” toward
what the model predicted, the individual quantites are almost never equal, and we want to
take into account this distance between the two selected quantity at the end of the simulation.
We define eq. which computes a score by selecting the two agents that choose on average
the most distant quantities in each simulation s € § and by taking the average of these values.
Results are given in Table |3| and show that ¢ = .15 is the optimal value to minimize dispersion
but that ¢ = .3 was actually quite close in terms of performance. Nonetheless, we will keep
as a rule of thumb that ¢ = .15 is an optimal value for simple problems in terms of dispersion
but can lead to some under-exploration issues as already seen in the critic analysis. For more
complex models, we will keep ¢ = .3 as the extra-exploration comes with a very little cost in
terms of dispersion.

v 1 1 ) )
S= ——< > max Dl (4.1.1)
card(S) = ijed T+1—-.98-T 98T
In Table [3] we also provide the results of the implementation of a non-linear variance
decay oPXP TRUNC(3) — ¢ max {1 — 1.0001’5_%T; O}. This function maintains for longer a higher

variance, and features a drastic fall at two thirds of the simulation. This non-linear decay is
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FIGURE 4.1.3. Estimated critic of agents in a Cournot duopoly (subsam-
ple of 15 critics over 107 simulations conducted with m = 2000, ¢ = .15, 7 = 0).
Black lines are the Cournot equilibrium, red lines are the Cartel equilibrium.
On the left, the heat-map represents the average estimation error (standardized),
whereas the right heat-map reminds profit values (the previous state being the
previous quantity selected by the opponent).

interesting for our analysis for two main reasons: first, it is economically realistic (firms will
want to learn rapidly to stop using random action as fast as possible to avoid losses), and it
allows the algorithm to have a better and longer exploration period while not enlarging the
simulation duration. This exploration policy is interesting as it features a lower dispersion but
is less precise. We can state that this policy is not optimal in the setting of fully myopic agents
in simple settings as a Cournot duopoly.

Global dispersion Intra-dispersion score
Sample QL +5% Qf+10% Qf+15% Q1(S) median(S) Q3(S) #S
Lin. ¢ = .06 0.583 0.667 0.667 0.031 0.056 0.223 12
Lin. ¢ = .15 0.794 0.991 0.991 0.029 0.063 0.126 107
Lin. ¢ =.3 0.75 1 1 0.043 0.064 0.135 10
Trunc. Exp. ¢ =.3 0.58 0.75 1 0.041 0.058 0.130 12

TABLE 3. Influence of the parameter ¢ and of the choice of the white
noise decay method on the Cournot duopoly (m = 2000, v = 0).

79.4% of simulations have converged toward an equilibrium that is in the interval
QF £ 5% with QF the Cournot analytical total solution in the ¢ = .15 scenario.
Q1 and Q3 are the first and the third distribution quartiles.

The other hyperparameter that have been already studied in the literature (especially by
Graf et al. 2023)) is the memory buffer size. To truly stick to the requirements of the game
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theoretic definition of the games that we study, we should not implement memory at all. But,
as DDPG algorithm rely on neural networks to learn optimal policy, it is technically impossible
to not use memory (Lillicrap et al. [2015)) for training the algorithm. Graf et al. 2023/ have stated
that the memory buffer size should only affect convergence time and not convergence properties
or accuracy. In our simulations (fig. [4.1.4), we find same results, that tends to indicate that
this is a feature of the DDPG algorithm and not implementation specific. As we do not bring
new results here, we do not perform an in-depth review of the impact of buffer size on our
algorithm and encourage the interested reader to study the previous reference.

Round o o Round

(A) m = 500 (B) m = 2000

FIGURE 4.1.4. The impact of memory buffer size in a Cournot duopoly (single
simulation conducted with ¢ = .15, v = 0).

Lecture: As stated by Graf et al. 2023, we observe that the stabilization around
the “convergence value” is reached faster when the memory buffer is smaller.

4.1.2. The Stackelberg duopoly

We now try to use our DDPG Algorithm in the Stackelberg framework. This model is more
challenging than the Cournot one as one agent has to play first. There exists, to the best of our
knowledge, no consensus nor example of implementation of continuous actor-critic algorithm
in the Stackelberg framework. As we want our model to stick as much as possible with the
game theoretic definition of the game, we choose the following design with fully myopic agents:
the leader chooses its quantity first with a constant input (and not the previous quantity as
we did in the Cournot model) and the follower reacts by choosing its quantity with the other’s
quantity as input. The following design can be written with the following system of simple
rules:

L
sy =0
VteT,{SF (4.1.2)

The results of our simulations are to some extent disappointing. This model is quite a bad
match with the DDPG algorithm in synchronous learning (and with a model-free implemen-
tation). Indeed, if the follower tends to learn quite well the best response as they do in the
Cournot framework, performances are far worse for the leader that fails more often and seems
to exhibit a bias. Such results are not entirely surprising as the algorithm is not well designed
to be used with rules that are as simple as are eq. The DDPG algorithm appears not
well suited to deal with single-state problems. We provide a summary of our findings in Table
[ The Shapiro tests confirm this diagnostic: if the follower converges following a normal law,
the leader seems more unstable. The negative bias observed is due to the leader, the follower
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playing the best response to the leader’s action. Overall, the total quantity seems pretty well
approximated, despite the issues with the leader.

0s0
Selected quantity

FIGURE 4.1.5. Distribution of selected quantities in the Stackelberg
duopoly (with the follower in blue and the leader in red, 107 simulations con-
ducted with m = 500, ¢ = .3, v = 0)

Black lines are the analytical optimal quantities, red lines are the median of ob-
served distributions.

Dispersion Shapiro Test  Distribution
Sample @& gt +5% ¢E+10% ¢t +£15% W p-value T 5

Follower 0.568  0.214 0.536 0.726  0.9891 0.7083 0.541 0.077
Leader 0.837  0.202 0.512 0.619 0.961 0.013 0.795 0.107

Total quantity 1.405 0.536 0.821 0.940 0978 0.159 1.337 0.083

TABLE 4. Implementation performance of the DDPG Algorithm in the
Stackelberg duopoly (84 simulations, m = 500, v = 0, ¢ = .3).

72.6% of simulations have converged toward an equilibrium where the follower
has chosen its quantity in the interval ¢§ + 5% with ¢% the Stackelberg analytical
solution.

4.2. Non-myopic agents in Cournot games: a study of algorithmic collusion

Now that the DDPG algorithm have been proven relevant in the modeling of oligopolies in
the myopic-agents framework, we will try to assess the evolution of the behavior of the algorithm
and of the outcome (equilibrium) with agents that are gradually less and less myopic. The aim
of this part is to answer our second research question (Q2).

First, we need to introduce a slight variation from the theoretical background that we have
described in previous sections. In order to keep our inputs and expected outputs in our [0, 1]
interval, we alter the Bellman equation such that eq. [2.2.1] becomes:

QW(Sta at) = E5t+1~E[(1 - ’Y)T(Sta at) + ’YQW(SHL M(3t+1))‘5t7 at] (4-2-1)

This alteration has been proven almost effectless on the output in our simulations. Nonethe-
less, it allows us to avoid advanced technics to scale the critic output. Moreover, it does not
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jeopardize the theoretical convergence of the Bellman equation as it keeps v lower than 1, in-
suring that the operator stays a contraction mapping. To keep our results comparable with
other works on collusive behavior with RL-algorithms, we can consider as a rule of thumb that
our case v = .5 is more or less equivalent with the normal case of v = .QEﬂ

Our objective is here double: we want to assess the impact of v on the ability of the
DDPG algorithm to find an equilibrium, and we want to see how the equilibrium reached
is altered. To assess these two points, we use two groups of measures. First, we provide
for each group of simulation measures of intra-dispersion (using to assess whether the
selected quantities were different of each other, and inter-dispersion (Qf, + k%, and the p-
value of the Shapiro test) to assess how and whether the simulations converge toward a fixed
equilibrium. Second, we assess the deviation of the equilibrium by: first, the share of simulations
that reach an equilibrium that is near the Cartel equilibrium, and second, the A-score from
Calvano, Calzolari, and Denicolo |2019 which takes into account the deviation from the Cournot
equilibrium.

I — 11
A = . Cotjkrnot (422)
HCartel - 1_[Cournot

Our simulations are conducted with D = 2.2 and ¢ = 0.2, for which the analytical equi-
librium (qéompJ 7T—Ek}omp.? qéournot? 71-éournotﬂ qéartel? Tréartel)? can be computed as (09177 01657 06477
0.492, 0.500, 0.539). The choice of these parameters has been made to ensure that all possible
values lay in the interval [0, 1] and, for the 4-oligopoly, that the equilibrium was analytically
convergent. All simulation are conducted with m = 1000, with an exploration variance de-
cay policy of ¢™*F TRUNC(3) — ¢max {1 — 1.0001°""%7; 0}, with a larger number of rounds
T =9 x 10* and, thus, a larger learning rate decay factor of w = .9999. These parameters have
been set to ensure that the algorithm can have sufficient training to reach an equilibrium.

We provide in Table [5] all the descriptive statistics previously defined. The first result
is perhaps the most expected: when v goes beyond the .5 threshold, the consistency of the
algorithm is jeopardized, as the target network has more weight than the normal critic network,
which leads to an expected instability that can be spotted by our intra-dispersion measure and
the higher variance in the equilibria obtained. We also spot strange results for the case v = .2
which seems discontinuous with the other values without us being able to provide any logical
explanation.

On the side of the collusion analysis, and more generally of the alteration of the equilibrium,
we observe that all simulations with “consistent” values of 7 (according to the last paragraph,
7 < .6) have converged toward an equilibrium that is slightly lower than what the model would
expect (the Cournot total value) and then what we encountered in the last section (almost
every group has converged to a mean lower than 1.28). This first observation is corroborated
by the A-score (which tries to measure the deviation from the Nash equilibrium to the Cartel
equilibrium) that is on average above .20 except for the strange v = .2 case. When we conduct
a Welch t-test, we find that this difference is statistically significative in almost every group.
Hence, we can state that our simulations have reached a collusive equilibrium.

Nonetheless, Table [5| is designed to allow us to conduct a counterfactual analysis, with
a perfect counterfactual (the case v = 0). This counterfactual is designed to allow us to test

%In some previous works including the one of Calvano, Calzolari, and Denicolo 2019, the ~ parameter can be
denoted as 4.
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Sample Qé,  Q&,  QF,. Shapiro Distribution Intra-dispersion
v m T +5% +10% +15% p-value Q  sd(Q) mean(S) sd(S) #S
0 1000 9x10* 055 085 095 0.053 1.273 0.092 0.121 0.07 74
0.1 1000 9x10* 0.64 095 097 0.122 1.274 0.076  0.151  0.089 39
0.2 1000 9 x 10* 0.54 087 0.93 0.44 1.295 0.092 0.156  0.08 54
0.3 1000 9 x 10* 0.64 0.92 1 0.4 1.27 0.063  0.152  0.101 36
0.4 1000 9x10* 0.6 0.96 1 0.556  1.281 0.072 0.15  0.081 48
0.5 1000 9x 10* 0.47 086 0.93 0.78  1.266 0.094 0.15  0.089 58
0.6 1000 9x10* 04 073 097 0492 1.267 0.103 0.169 0.12 30
0.7 1000 9x10* 049 076 095 0.98 1.305 0.105 0.173  0.15 55
0.8 1000 9x10* 053 0.82 097 0219 1.284 0.09 0.2 013 34
0.5 2000 9x10* 0.57 0.79 0.97 0205 1.294 0.095 0.15  0.093 72
0.5 3000 9x10* 0.59 0.97 1 0.622 1.294 0.069 0.156  0.118 29
0 500 6x10* 0.69 0.94 0.99 0 1.313 0.083 0.136  0.096 72
0 1000 6x10* 0.64 0.91 0.97 0.015 1.295 0.081 0.149  0.098 150
(A) Implementation performance
Inter-dispersion
Sample QCar. QCar.  QCar. Collusion t-test p-value
¥ m T +5% +10% +15% 1I 5 A A>A_y A>0 #S
0 1000 9x10* 0.01 0.05 0.12 1.005 0.939 0.214 - 0.001 74
0.1 1000 9x10* 0.03 0.03 0.03 1.008 0.946 0.252 0.356 0.003 39
0.2 1000 9 x10* 0 0.04 0.09 0992 096 0.074 0.903 0.399 54
0.3 1000 9 x 10* 0 0 0 1.012  0.947 0.292 0.207 0 36
0.4 1000 9x10* 0 0 0.02 1.004 0.965 0.212 0.511 0.005 48
0.5 1000 9 x 10* 0.03 0.07 0.09 1.009 0.973 0.261 0.322 0.001 58
0.6 1000 9 x 10* 0 0 0.13 1.006 0.979 0.225 0.471 0.104 30
0.7 1000 9 x 10* 0.02 0.02 0.05 0.981 0.985 -0.042  0.978 0.696 55
0.8 1000 9x 10* 0 0.03 0.09 0997 0995 0.13 0.758 0.211 34
0.5 2000 9x10* 0 0 0.11  0.992 0.967 0.077 0.904 0.357 72
0.5 3000 9x10* 0 0 0 099 0978 0.122 0.794 0.195 29
0 500 6x10* 0O 0 0 0982 0952 -0.028  0.984 0.763 72
0 1000 6x10* 0.01 0.02 0.03 0.994 0.953 0.099 0.928 0.034 150

TABLE 5. Counterfactual analysis of the effects of non-myopic agents

(B) Collusion assessment

with our DDPG Algorithm (¢ = .3, 751 simulations).

The two last lines are implemented as a reminder, to assess the effect of the

increase of the simulation length.

whether there exists a consistent relationship between v and collusive equilibrium (assessed here
by the A-score), as proved with Q-Learning by Calvano, Calzolari, and Denicolo 2019, Here,
we do not find any evidence of such a relationship. To test this result, we conduct asymmetric
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Welch t-tests with reference to our counterfactual v = 0 (we denote this test in Table [5b| as
“A > A,_y") and find no statistically significant difference (fig . We also try to use an
OLS estimation using a simple model A; = §y + 517 + € and find a non-significative estimate
of 31 = 0.033 (st. error of .15 and p-value of .82 on 7 € [0,7) and v # .2). Our results are here
more in line with the ones from Abada, Lambin, and Tchakarov [2022 who have not found any
relationship between v and collusive equilibrium with an actor-critic implementation.

Ll

\\
|
/

Delta (Collusion m

gamma

FIGURE 4.2.1. The relation between the v parameter and the A-score
(518 simulations conducted with m = 1000, ¢ = .3)

Though we cannot find any proof of a link between v and the collusive outcome, we can state
that the increase of the simulation duration (and thus of the training) and of the memory buffer
size has caused the statistically significant increase of the A-score. We use the counterfactuals
{m =1000,7 = 0,7 = 6 x 10*} and {m = 500, = 0,7 = 6 x 10*} in Table [5b] and show that
their A-score is significantly lower than the one of the group {m = 1000,y = 0,7 = 9 x 10%}.
The increase of the p-value of the Shapiro test is explained by the fact that there exist two
attractive points in some of our simulations: a Nash equilibrium where most simulations are
converging to, and sometimes (though it is rare) the Cartel equilibrium. Removing these
extreme values corrects the issue.

We also perform simulations with m = 2000 and m = 3000 to test whether it is relevant
to keep increasing the memory length to increase collusion. We find no evidence of such a
relationship. Worse, we find that collusion was actually smaller in these groups than in the
m = 1000 group. We find that the average A-score was significantly lower in the m = 2000
group than it is in the m = 1000 (Welch’s test p-value of 0.054). We also find that we cannot
conclude that the average total profit collected by firms is higher than what it should analytically
be at the Nash equilibrium (we find a p-value of .155 and .08 against “sample average profit is
greater than .984” in a Welch t-test). This suggests that collusion is only possible with rare
tuples of values for (m,T,w) and is in fact quite rare.

Despite having no significant effect on the outcome, the v parameter is not entirely useless.
Indeed, we tried to assess the evolution of the Critic estimator when ~ increased (with perfect
counterfactuals as every other parameter is kept constant). We implemented a new measure,
0 that takes into account how the algorithm is valorizing the collusive outcome against the
Nash equilibrium. Our ¢ is simply the quotient of the average of the estimated Q-Value in an
e-neighborhood around the Cartel quantity divided by the same average in the e-neighborhood
of the Nash quantity (eq. 4.2.3]). We take for simplicity the neighborhood +15%.
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ZsteB(qgw,O.wqgw) ZatEB(qéa_,OJSqéaJ Q" (51, a)

5=

_ (4.2.3)
ZsteB(q’C’io‘,OJSqéoA) ZateB(qéo_,O.ISqéo') Q (st7 at)

We find a statistically significant relationship between 5E| and v. When performing a simple
OLS regression 6; = By + 517 + €;, on the {m = 1000, € [0,0.7],T = 9 x 10*} dataset, we
estimate 0; = 0.938 + 0.066; + e; with a high significance for both regressors, especially for
Bl whose p-value is less that 2716 and its standard error is 0.006. This property appears to
be also true even in groups without any trace of collusion like the ones with m = 2000 and
m = 3000. This suggests that the algorithm is better valorizing the collusive equilibrium as
increases, but despite being more and more valuable, chooses not to play it.

To delve more into the details of this relationship, we implement two linear models:
min(;,0_;) = B + B max(0;,0_;) + By + € (4.2.4)
a; = 5 + BY6 + B56_i + €

The first one, eq. links the minimum of (d;,0_;) with the maximum value of (d;,0_;),
controlling by the parameter v of the simulation. This tries to encompass the relationship
between the two variables 0; and d,: we want to check whether they covariate in the same
direction, i.e. whether both algorithms are together better valorizing cooperation. The second
model, eq. [£.2.5 wants to show that the action of each agent is both affected by its own
valuation of the cooperative equilibrium and the valuation of its opponent. These two models
allow us to evaluate the global effect of these valuations on the total equilibrium.

If we assume without any loss of generality that §; < d_;:

a = 55 + 5 (B + B0 + By + ) + G50 + €5

4.2.6

asi= 55 + B30+ 5 (B + Blo_i+ Bly+ ) + €8 o

o= 85 + 5780+ (B35 + B5)5 i + BEBLy + B + €9 (427
aci = B5 + G5B + (85 + BS )6 + BBy + G5 + &5 B

= a; +a_ =205 + (87 + 8585 + (B + 85) (1 + B{)o (4.2.8)

+ BLBS + )y + (B5 + BS)el + 265

To estimate these models, we split our sample into two groups. The first one is constructed
within the group v = 0,m = 1000, 7 = 6 x 10* presented in Table , and which is our “perfect-
collusion-counterfactual” as it is a group where the total profit (and action) converges toward
the analytical Nash solution, and in which the A-score is on average 0 (or slightly above for
m = 1000, but this increase is dramatically slighter than what is observed in the other groups).
It is also the group in which the perfect tuple enabling collusion is not met. We remove from this
group any simulation in which the A-score reached a value above .3. We denote it hereinafter as
the “Zero-collusion group”. We construct another group with all the simulations performed with
the settings v € [0,0.7],m = 1000, T = 9 x 10* where we reached average A-scores statistically
significantly different from 0. Our goal in this estimation is to analyse how being in the optimal
tuple (m = 1000,7 = 6 x 10*,w = .9999) affects the decisions of agents and makes them
cooperate more.

3Here, it is the mean of the d-score of each of the two agents.
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Estimate t. value p-value Estimate t. value p-value
(cste) 0.271 2.73  0.0077 (cste) 0.444 761  2.14e P
(0.099) ok (0.058) otk
max(d;,0_;)  0.685 6.70  1.85¢7? max(d;,0_;)  0.486 8.03  1.17¢™ M
(0.102) Hokx (0.061) Kok
vy - - - v 0.058 7.66  1.49¢713
(-) (0.008) otk
(A) Zero-collusion group (91 simulations, (B) Collusion group (393 simulations, R? =
RZ = .33) .34)
TABLE 6. First stage regression to link min(d;,d_;) with max(d;,0_;) (eq.
4.2.4).
Estimate t. value p-value Estimate t. value p-value
(cste)  0.425 2.43 0.016 * (cste)  0.478 5.35  1.17707 *x*
(0.175) (0.089)
i -1.139 -8.04  1.22¢713 *xx i -1.107  -15.84 < 2e716 Hxx
(0.142) (0.07)
0 1.398 9.86 < 2e710 *Hk 0_; 1.275 18.25 < 2e716 *xx
(0.142) (0.07)
(A) Zero-collusion group (182 observations, (B) Collusion group (788 observations, R2 =
R? = 43) 4)

TABLE 7. Second stage regression to link a; with (J;,6_;) (eq. [4.2.5).

We provide estimation results for the two linear models in Table [6] for the first stage, and
Table [7| for the second stage. In every estimation, regressors (except the constant) are always
very significant with very low p-values. From Table [6, we can state with confidence that §; and
0_; are positively correlated. This shows that both algorithms are increasing their valuation of
the cooperative state at the same time. This result, if taken without the second stage, could
be misleading: even if they are together better valorizing the cooperative state, they do not
necessary play it.

Indeed, Table [7] allows us to recover a famous result in game theory: cooperative equilibria
can have two opposite effects on the decision of the player. First, they allow it to increase its
profit, what incentivizes it to lower its quantity (we find it in our results as 37, the coefficient
of §; on a;, is always negative, indicating a reduction of the produced quantity towards the
Cartel quantity) to reach the equilibrium. Second, they are an opportunity to increase its
profit by taking advantage of the other player. Indeed, if the other will play cooperatively, and
if our agent at the same time chooses to produce more, our agent will receive a higher profit,
incentivizing him to increase its quantity (we find it in our results as 85, the coefficient of J_;
on a;, is always positive, indicating an increase of the produced quantity).

These two effects (incentive to cooperate or temptation to betray) are playing simultane-
ously making the task to determine the outcome difficult. We write the system of our two
agents in eq. and find by using eq. that the effect of the variables d;, _; on the total
quantity can be identified by the parameter (8% + 85)(1 + 3{), whose magnitude determine
the effect of an increase in the valorization of the collusive equilibrium. Due to the complex
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computation that has been required to find such result, this parameter cannot be interpreted by
itself, but should be compared between groups. According to Tables [6] and [7] we can estimate
this parameter:

(BY +B5)(1+ B]) = (4.2.9)

(—1.139 + 1.398)(1 + 0.685) = 0.436  Zero-collusion group
(—1.107 4+ 1.275)(1 + 0.486) = 0.250 Collusion group

By eq. [£.2.9, we find that a; + a_; will increase more in the group of no collusion when
the d-score increases, proving an higher prevalence of the betray decision when the cooperative
outcome is at reach. To be perfectly rigorous, we estimate the constant term (and the “quasi-
constant” part of 7 as it is insignificant at a precision of 1 x 107%). We find in eq. that
the constant part was lower in the Zero-collusion group, jeopardizing the interpretation of the
(B5+55)(1+37) coefficient. Nonetheless, we can ecasily show that this difference is insignificant:
by considering that 75% of d-scores of the group are in the interval [0.933, 0.979], the difference
needed to have the same average is 0.1154, which leaves our corrected (35 + 35)(1+ /) higher
in the Zero-collusion group than it is in the Collusion group.

285 + (BY + 89)B3 + BL(BY + B )

2-0.425 + (1.398 — 1.139)0.271 = 0.920 Zero-collusion group
=412-0478 + (1.275 — 1.107)0.444 + 0.058(—1.107 + 1.275) v = 1.03  Collusion group
<.‘0(01
(4.2.10)

To sum up, we have shown that the introduction of non-myopic agents is not really jeopar-
dizing the ability of our implementation of the DDPG algorithm to find an economically-valid
and consistent equilibrium. If it can be slightly more disordered and no longer follows a normal
law, these issues are in fact features as it shows the alternance between the regular equilibrium
and a more collusive one. On the possible collusion, we find that « has no direct impact on the
collusive outcome, contrary to the optimal tuple formed by the duration of the simulation, the
memory buffer length and the decay rate. We have shown that the fact that the tuple of these
parameters is at the value (m = 1000,7 = 9 x 10%,w = .9999) impacts the collusiveness of the
outcome by distorting the response to a higher relative valuation of the cooperative equilibrium,
by reducing the weight of the betray temptation.

4.3. From duopolies to oligopolies in Cournot games: a journey among stable and

chaotic equilibria

In this section, our goal is to study the possible shifts in behaviors that can be observed
when our markets are populated by more than two firms. The challenge is interesting as
this configuration may be the most common in real life markets. The objective of this part
is to study the consistency of obtained equilibria, the effects of non-myopic agents, and the
behavior of the model with non-stable settings (which cause chaotic equilibria when studied
analytically). Similarly to what have been done previously, we compute the tuple of parameters
that will allow us to perform consistent simulations with our framework, i.e. simulations that
will never require neither the critic nor the actor to respond with a higher value than one. We
use D = 5, n, = .25, H, = .15, with ¢ = .6 in “stable” simulations and ¢ = .5 in unstable
simulations. We compute the equilibrium tuple corresponding to these values: (0.962, 0.289,
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0.806, 0.410, 0.543, 0.489) for the stable case, and (1, 0.275, 0.833, 0.410, 0.556, 0.497) for the
unstable casd’] All simulations are conducted with 7' = 9 x 10* and with a linear exploration
white noise decay process with maximum variance () of .3.

Inter-dispersion

Sample Qé, Q&, Shapiro Distribution Intra-dispersion

v 9 —

c v m +5% +10% p-value @Q sd(Q) mean(S) sd(S) A #S

06 0 500 0.94 1 0.001 3.20 0.089  0.232  0.093 0.028 113
0.6 0 1000 0.90 1 0.001 3.15 0.079  0.193 0.086 0.120 97
0.6 0 2000 0.93 1 0296 3.16 0.071 0.185  0.070 0.117 43

0.6 0.5 500 0.68 092 0.008 333 0.152  0.280 0.101 -0.258 &4
0.6 0.5 1000 0.86 0.99 0.057 3.25 0.107  0.255 0.091 -0.081 &3

05 0 500 0.94 1 0.122  3.34 0.096  0.240 0.083 -0.025 105
0.5 0 1000 1 1 0.230 3.31 0.074  0.203  0.070 0.034 30

TABLE 8. Implementation performance of the DDPG Algorithm in the
Cournot 4-oligopoly.

We provide our usual indicators of what we have defined as intra and inter dispersion in
Table[§l On the matter of unstable equilibria, our model seems not to be affected by the chaotic
nature of the analytical equilibrium: in both settings, 94% of simulations have converged toward
an equilibrium that is in the 5%-confidence interval. We find that our model has converged
toward the same mean (after correcting for the effect of the change in ¢) with a p-value of .022,
and, consequently, that the mean of our A-score are equal with a p-value of .049 (we have
performed at each time a Welch t-test). These results are corroborated by the Kolmogorov-
Smirnov test, that gives us a p-value of .8352, suggesting that the ungerlying distribution is the

same for both samples. Nonetheless, if we cannot state that mean (.5) is significantly higher in
the unstable group, we cannot state either that the two means are equal (p-value of .5).

We also perform the same simulations with non-myopic agents. If the simulations with non-
myopic agents appear not consistent with m = 500 (the majority of convergence equilibria are
above the Cournot analytical equilibrium, indicating that the agents have not found the optimal
behavior), the group with m = 1000 exhibits solid convergence toward the Cournot equilibrium.
We confirm a famous result in the literature about algorithmic collusion: the more firms are
on the market, the less collusive behaviors are observed. We find by conducting a Welch t-test
that we can safely reject the hypothesis that the means of the selected equilibrium (Q) and the
means of the A-scores are different in the sample (v = 0,m = 500) and (y = .5,m = 1000)
(with p-values of .0005 and 0.0006). We also can state that the intra-dispersion is very close in
both groups, with a Welch t-test p-value of .085. Overall, we can state that we find no evidence
of an effect of the v parameter on our simulations.

As we have previously noticed an effect of the memory length on the equilibrium, we per-
form the same simulations with different sizes for the memory buffer. We find that the behavior
of the algorithm is not modified in the unstable case (all means are equal with p-value less than

4Obviously7 this equilibrium is actually not a true equilibrium as we have shown in the Theoretical Framework
that the model does not analytically converge toward a stable value. Here, we have computed the steady-state
of the model, keeping in mind that the theory would impose that this value should never been durably observed
as an equilibrium.
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.08). Surprisingly, the stable case is more interesting: we find that the equilibrium reached de-
creased, indicating slight collusion (the A-score increases). Though the intra-dispersion appears
constant (same mean with pvalue .002), the median dispersion is reduced with higher memory
from .25 to .17, suggesting better convergence as the Nash-equilibrium should be symmetric.
We find with very high statistical significance that the average A-score is higher in the high-
memory group, and that the average quantity chosen is lower within the high-memory group
(both p-values are equal to 4¢7%). As previously noticed for the intra-dispersion, the inter-
dispersion is also lower: we find with high significance (the p-value of the Kolmogorov-Smirmov
test is .001) that both samples are not evenly distributed (after correcting for the difference in
means), and that the high-memory group has a lower variance (with a Fisher test with p-value
of .12, and a Levene test with p-value of .000). We do not notice any interest for increasing the
memory length above m = 1000, as we do not observe any statistically significant differences
with the group m = 2000 for instance (we could even affirm with more data that the underlying
distribution is the same as the Kolmogorov-Smirmov gives a p-value of .867 indicating that the
total quantity reached at the equilibrium is distributed following the same law between the two

groups).

Despite noticing no major changes in the equilibrium reached between the stable setting
and the unstable one, we point that both groups have converged toward an equilibrium that
is highly asymmetrical, an effect that can be attributed directly to the shift from a duopoly
to the 4-oligopoly. We find in each group an average intra-dispersion score of .2, where it was
at .05 in the Cournot duopoly. Though the difference is important, we should keep in mind
that our S-score measures the maximum distance between agents and not the average, which
in part justifies the dramatic increase of this indicator.

5. DISCUSSION

5.1. Our results in the algorithmic-collusion field

Overall, our results tend to support the thesis developed by Abada, Lambin, and Tchakarov
2022| especially in the Cournot 4-oligopolies. We can state that collusive outcomes have been
very rare in our settings, and appear to be an exception caused by well-chosen parameters.
When we increase learning time, and memory, we find, especially for the 4-oligopoly, that the
algorithm converges toward the Nash equilibrium. Our only divergence with them (and with
Graf et al. 2023)) is on the memory parameter. We find that some combinations (m = 1000,
T = 90000, w = .9999) allow the algorithm to find a collusive equilibrium that yields to agents
a profit that is between 10 and 20 percentage points higher. This shows that a higher training
does not necessarily leads to the Nash-equilibrium, and that the memory length does not only
affect the time before convergence.

When we find collusion (in the case of the Cournot duopoly and in the Cournot 4-oligopoly),
we do not spot any punishment behaviors as Calvano, Calzolari, and Denicolo 2019l Our results
appear in perfect contradiction with the former approach (for instance for the influence of the
forward looking v parameter), suggesting that their results were implementation specific (Q-
Learning, with their set of parameters and their ultra-short memory duration).

Overall, it seems that collusion in our settings has been observed when we reached ideal
settings for the algorithms to collectively find better outcomes. The cases without any collusion
are clearly more common than the ones where collusion can appear, and we highly doubt that
the slight deviation from the equilibrium we observe can be replicated in real-life conditions,
with non-identical algorithms, probably not optimally calibrated.
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Works on algorithmic collusion often conclude on policy implications. Again, following the
work of Abada, Lambin, and Tchakarov 2022, we do not find any reason to adjust anti-trust
policies, as more sophisticated algorithms seem more likely to serve rational competition than
collusion. However, despite our efforts to implement fully decentralized learning algorithms, we
need to be aware that our models are not realistic as they assume fully identical algorithms,
without pre-training and without temporal differences (all firms join the market at the same
time). Such study could actualize overlooked previous works of the evolutionary game theory
field which have studied the evolution of strategies in an heterogenous market (we pinpoint
the work of Dixon, Wallis, and Moss [2002). Implementing heterogeneity, and question its
implications on the obtained equilibrium, could make a very interesting work to allow these
theoretical results to be more useful for policy-makers and corporate managers.

5.2. Implications on the validity of the dynamic Cournot model

Our last section has allowed us to discover that our artificial market with self-learning
agents are not significantly affected by market situations that are analytically unstable. We
have found no evidence of a shift in behaviors. Worse, we find no element that could corroborate
the best response adjustment process described by Cournot [1838| and studied analytically by
Theocharis 1960 and his followers. We observe, as expected with a DDPG algorithm, a slow
convergence toward a stable value, and not a converging (or diverging) oscillation around an
equilibrium.

These results are confusing as they raise questions about the validity of the Cournot adjust-
ment behavior. The lack of economical interpretation for this chaotic behavior, corroborated
by our findings with artificial agents, should make us doubt of the validity of the model. What
is surprising though, is the accuracy that characterize the converging behavior of our model to-
ward the analytical steady state, even if this state should not be stable. This question requires
now a theoretical investigation, to give new ground for this model that predicts well, but fail
to explain why.

CONCLUSION

Our main contribution has been to introduce the first agent-based model of competition
in quantities featuring a Deep Deterministic Policy Gradient (DDPG) algorithm. This algo-
rithm has been selected as a replacement for the traditional Q-Learning algorithm that impose
dramatic simplifications (discretization of the action set, ...), to examine two current unsolved
questions in the economic literature: the tendency of algorithmic markets to converge toward
a collusive equilibrium, and the chaotic behavior of the dynamic Cournot oligopoly.

To address these questions, we have shown that the DDPG algorithm, despite theoretical
reserves, is a relevant tool to model multi-agent systems (MAS). We have exhibited that both
in the Stackelberg and in the Cournot model, the DDPG algorithmic-agent was able to find the
Nash equilibrium and, hence, to maximize its profit, without any knowledge on the other firms
nor on the demand function. We have studied the effect of hyper-parameters on the behavior
of the algorithm and find consistent results with the previous literature.

Then, we have shown that, under well-tuned parameters and circumstances, the DDPG
algorithm could, as the Q-Learning does, lead to collusion in the Cournot oligopoly. We have
found that this collusion was linked to a certain combination of the memory of the agent, the
training duration and the learning rate decay factor, and not to its actualization rate (). We
have developed an estimation strategy that allowed us to show that the former parameters were
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impacting the equilibrium by adjusting the balance between the temptation to betray and the
interest to play cooperatively. Collusion has been shown to appear only in optimal settings,
and not as a general phenomenon.

However, we can state that we have demonstrated, by studying the dynamical Cournot
4-oligopoly, that our DDPG model always converge toward the Nash equilibrium (or above if
not sufficiently trained, or below in optimal settings with collusion), but never follows a chaotic
path. This result proves that chaotic equilibria are not a feature of the model. This shadows
the theoretical validity of the adjustment process of the dynamical Cournot model, suggesting
that the chaotic behavior only exists on paper.

CODE AND DATA AVAILABILITY

Our implementation of the DDPG algorithm has been entirely made from scratch in C++.
We provide a GitHub repository (https://github.com/Aldric-L/DDPG-Oligopolies-Simulator)
where both the source code and the simulations can be found. The source code is licensed
under [Creative Commons Attribution 4.0 International.


https://github.com/Aldric-L/DDPG-Oligopolies-Simulator
https://creativecommons.org/licenses/by/4.0/
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APPENDIX A. THE COURNOT STABILITY PROBLEM

In this appendiz, we will prove that the Cournot static game is the limit of the converging
case of the Cournot temporal model. We also determine a convergence criteria.

The produced quantities are determined by the following system of first-order difference
equations:

[0 1 1 1]
D=Y,, 4
¢ = 2(11? ' q} 1o 1 4 D
D I A [ (A.0.1)
i : 21+ ) 1 1 1 : : .
N _ D_Z#N di—1 qiv .. . 1 qi\il D
dt 2(1+c) —_—— ' ’ —_— —
Q¢ _1 1 1 0 Qt—1 B
A
This can be rewritten in the form of a sequence:
-1
= AQ;_1+ B
Q1 21 +0) (AQi—1 + B)
~1 )2 -1 \° -1
- <— A’Qp s + ( > AB + B
2(1 +¢) 2(1+¢) 2(1+¢) (A.0.2)

o (aa) 10 B (iva) 20

0<k<n

To compute A" we perform spectral analysis on this My(R), N > 2:
Sp(4) = {-1,(N - 1)}

First, as 0 ¢ Sp(A) and as 1 ¢ Sp(A) we deduce that A and A—1I,, are non singular matrices.
Hence, we can refine equation

0, (2(1_i C))tAth + 2<1_i 5 L;@ (2(1_i c))kA’“] B
- <2(1_—ic)A>tQ0 - 2(1_+1 c) [<<2(1_+1- c) A) - ]N> (2(1_—+10)A ) ]N) 1] ’
~(awta) o i) Al

* 2(11+ o [(2(1_i e [N) _1] B

We simplify the latter expression (A.0.3) by denoting k =

(A.0.3)

-1 .
2(14c) "

Qi = (kA)' [Qo + k(kA) (kA —Iy) ' B] —k(kA—1Iy)"' B (A.0.4)
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Proposition A.1. for N > 2 we have A = PDP~! with

N—-1 0 0 --- 0 1 -1 =1 --- —1
0 -1 0 . r 1 0 - 0
D= 0o o - 0 o]|,P=|1 0 . 0 (A.0.5)
: : 0 L .0
| 0 o -~ 0 -1 _1 o --- 0 1_

The last proposition allows us to rewrite [A.0.4}
Q.= P(kD)' P! [QO + k(kPDP~Y) (kPDP™' — Iy) ™ B] —k(kPDP' —Iy) ' B

(A.0.6)
The latter equality provides a convergence criteria:
lim (kD)" = Oy < |K(N = 1) < 1
—00
-1 |1 N-3 _ ~(V+1) (A.0.7)
= = r ————=
21+¢| N-1 2 T ¢
Assume that this condition is met, we have:
. -1
tlgro}; Qi=—-k(kA—1Iy) B (A.0.8)
We can now show that this limit is the standard Cournot model:
1 -1
lim @ = —k (kA — Iy)'B = (E[N — A) B (A.0.9)
—00
Let us recall that the standard Cournot model is:
[0 1 1 1]
D=, ¢
0t = Lt ¢ P EE ] [p
] = — | A.0.10
e it ||t 1 : ( )
N = D guznd ¢~ 1| Le" D
q 2(1+c¢) N ) —_—— —
oc (1 -~ 1 1 0] g F
)
< QY =k(EQ°+F)<Q°=(k'Iy—E)'F (A.0.11)

By noticing that £ = A and F' = B, we have the fundamental result, that is, if the
convergence criterion is met, the two models are asymptotically equal:

lim Q; = —k (kA — Iy)'B=Q° (A.0.12)
—00
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Proof of equation[A.0.5 We will first prove by induction that the characteristic polynomial of
matrix A is PAN) = —(1 + A\)PA | + (—=(1+ A)" for n > 2 with PA()\) = —\:

Initialization: Py = ‘_f\ _1)\‘ =M—-1=—-A+1(=N) -1+
Inheritance: Assume that PA(A) = —(1+A\)PA | + (—(1 + \))"" for n > 2 with P = =\
is true for a given n > 2.

- 1 1 - 1 -A—-1 0 - 0 1+X
1 -2 1 - 1 1 -2 1 .- 1
PLNM=]|1 1 "~ 1 :f|=| 1 1 1 :
: : 1 : : 1
1 1 1 =X 1 1 1 -
Li<—L1—Lpi41
-2 1 1 1 - 1 1
1 . 1 1 1 1
=(=A—1) +(=1)"(1+N) |
: A | S .=
1 - 1 =X 1 1 - 1

We can simplify the right hand side by an immediate recurrence with L; < L; — L,, such
that:

1 -x 1 1 0 -A—1 0 0 I -2 1 1
11 1 1 1 - 11 1
_ _ — (A1) == (1+N)"
Do .=A : : o= o =\
1 1 - 1 1 1 R S P 1 1 - 1

Hence we can conclude and verify the inheritance:

Py = 1+ 0B+ (=1 +X)"

Now that we have the characteristic polynomial of A, we can express it as a function of n
and A. We prove by induction that Vn > 1, PA(\) = (=1)"2(1 + A)" YA —n + 1).
Initialization: PA()\) = —\.
Inheritance: Assume that P2(A) = (=1)"2(1 + A\)"'(A—n+1) for n > 1 with P{* = -\
is true for a given n > 1. By the previous induction, we get:
PLA) =1 +N)ED)" 20+ A =n+ 1)+ (—(1+ )"
= (=D)" M1+ X" A—n+1)+ (—(1+ )"
= (=1)" 1+ N)"(A = n)
Which completes the proof of the characteristic polynomial.

From the previous proof, we have that Sp(A) = {)\ e R, PA()\) = O} ={-1,n—1}. We
can find the eigenvectors associated with these eigenvalues.

For —1: We first use the rank theorem rank(A + 1,,) + dim(ker(A+1,,)) = n = dim(ker(A+
I,)) =n—1as (A+ I,) is the matrix whose every coefficient is one. Hence, we get that the
dimension of the eigenspace associated with —1 is n — 1. Let’s determine a basis for this
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eigenspace. We observe that we are looking for every vector u € R™ such that (A + I,)u =
Orn = ue{ueR" >, u =0} With e; the canonical vector of R", we propose the family
(e1—ea, e3—e€3, ..., €,_1—€,) which is free by construction and hence a basis of {u € R", >’
0}. We conclude that E_; = vect(e; — ez, €5 — €3,...,€4_1 — €5).

i<n Ui =

For n — 1: By a similar argument, we are looking for the dimension of ker(A + (1 —n)I,).

1 1—-n 1 :
k(A+(I-n)h) =2kl 1 1
. 1
|1 1 1 1-n]
[0 0o 0 0 |
1 1—n 1 1
=1k |1 1 I—n
1
_1 “ .. 1 1 ]. - n_ Ll‘—20<i<n Lz
0 0 0 0 |
=rk 1 1 1-n - 1
S S
| 1 T 1 1 1- n— L2‘721<i<n L;
0 0 0 0 ]
n—1 -1 -1 —1
=rk n 0 —mn - 0
n 0 0 —n| Vie[3,n],Ls«Li+La
0 0 0 0 |
1 -1 0 0
=rk|n 0 -—n 0
SO
_n 0 0 _n_ LQ‘*L2*%ZQ<i<n Li
[0 0 0 0]
-1 1 0 0
: 0
-1 0 --- 0 1 . -1
| Avie[3,n],Lie——>L;

Hence we have that k(A + (1 —n)I,) = n— 1, and by the rank theorem, we have dim(ker(A +
(1 —n)I,)) = 1 We propose the family formed by the vector (n — 1,0,...,0) as a basis for
{ue R", (A+ (1+n)l,)u=0p0,} Asthe dimension of this family is one, and the dimension
of the eigenspace is one, as the vector belongs to the eigenspace and as the family is trivially
free, we have that: E,,_; = vect((n — 1,0, ...,0)). O
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