ANALYSE DANS \mathbb{R}^n - LICENCE 2 Aldric Labarthe - Université Paris 1

TD1 - Rappels (\pm 1 séance)

Rappel 1: Coordonnées polaires

$$\forall X = (x_1, x_2) \in \mathbb{R}^2, \quad \exists R \in \mathbb{R}_+, \exists \theta \in \mathbb{R} : \begin{cases} x_1 = R \cos \theta \\ x_2 = R \sin \theta \\ \sqrt{x_1^2 + x_2^2} = R \end{cases}$$

TD2 - Topologie ($\pm 2 \text{ séances}$)

Cours 1: Norme et Distance

Norme Une norme sur un espace vectoriel E est une application

$$\|\cdot\|:E\to\mathbb{R}^+$$

qui satisfait les propriétés suivantes pour tout $x,y\in E$ et tout $\lambda\in\mathbb{R}$:

- Positivité: $||x|| \ge 0$ et $||x|| = 0 \iff x = 0$,
- Homogénéité : $\|\lambda x\| = |\lambda| \cdot \|x\|$,
- Inégalité triangulaire : $||x + y|| \le ||x|| + ||y||$.

Distance Une **distance** sur un ensemble X est une application

$$d: X \times X \to \mathbb{R}^+$$

qui satisfait les propriétés suivantes pour tout $x, y, z \in X$:

- Positivité: $d(x,y) \ge 0$ et $d(x,y) = 0 \iff x = y$,
- Symétrie : d(x,y) = d(y,x),
- Inégalité triangulaire : $d(x, z) \leq d(x, y) + d(y, z)$.

Cours 2: Ouverts d'un espace métrique, Bolzano-Weierstrass et suites de Cauchy

Ensemble ouvert Un sous-ensemble $A \subset X$ d'un espace métrique (X, d) est **ouvert** si, pour tout point $x \in A$, il existe un réel $\varepsilon > 0$ tel que la boule ouverte

$$B(x,\varepsilon) = \{ y \in X \mid d(x,y) < \varepsilon \}$$

soit contenue dans $A: B(x,\varepsilon) \subset A$.

Ensemble fermé Un sous-ensemble $A \subset X$ d'un espace métrique (X,d) est **fermé** si son complémentaire $X \setminus A$ est ouvert. Autrement dit, A est fermé si pour toute suite $(x_n) \subset A$ qui converge vers $x \in X$, on a $x \in A$.

Suite de Cauchy Une suite $(x_n) \subset X$ dans un espace métrique (X,d) est dite de Cauchy ssi :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall m, n \ge N, \quad d(x_n, x_m) < \varepsilon.$$

Théorème de Bolzano-Weierstrass Toute suite bornée dans \mathbb{R}^n possède une sous-suite convergente.

- Une suite (x_n) est bornée s'il existe un réel M > 0 tel que $||x_n|| \leq M$ pour tout n.
- Une sous-suite est une suite extraite des termes de (x_n) , notée $(x_{\varphi(n)})$, où $\varphi: \mathbb{N} \to \mathbb{N}$ est strictement croissante.